Causality in physiological signals.
نویسندگان
چکیده
Health is one of the most important non-material assets and thus also has an enormous influence on material values, since treating and preventing diseases is expensive. The number one cause of death worldwide today originates in cardiovascular diseases. For these reasons the aim of understanding the functions and the interactions of the cardiovascular system is and has been a major research topic throughout various disciplines for more than a hundred years. The purpose of most of today's research is to get as much information as possible with the lowest possible effort and the least discomfort for the subject or patient, e.g. via non-invasive measurements. A family of tools whose importance has been growing during the last years is known under the headline of coupling measures. The rationale for this kind of analysis is to identify the structure of interactions in a system of multiple components. Important information lies for example in the coupling direction, the coupling strength, and occurring time lags. In this work, we will, after a brief general introduction covering the development of cardiovascular time series analysis, introduce, explain and review some of the most important coupling measures and classify them according to their origin and capabilities in the light of physiological analyses. We will begin with classical correlation measures, go via Granger-causality-based tools, entropy-based techniques (e.g. momentary information transfer), nonlinear prediction measures (e.g. mutual prediction) to symbolic dynamics (e.g. symbolic coupling traces). All these methods have contributed important insights into physiological interactions like cardiorespiratory coupling, neuro-cardio-coupling and many more. Furthermore, we will cover tools to detect and analyze synchronization and coordination (e.g. synchrogram and coordigram). As a last point we will address time dependent couplings as identified using a recent approach employing ensembles of time series. The scope of this review, as opposed to various other excellent reviews like (Hlaváčková-Schindler et al Phys. Rep. 441 1-46, Kramer et al 2004 Phys. Rev. E 70 1-10, Lombardi 2000 Circulation 101 8-10, Porta et al 2000 Am. J. Physiol.: Heart and Circulatory Physiol. 279 H2558-67, Schelter et al 2006 J. Neurosci. Methods 152 210-9), is to give a broader overview over existing coupling measures and where to look to find the most appropriate tool for a given situation. The review will comprise a test of one representative of the most important coupling measure groups using a simple toy model to illustrate some essential features of the tools. At the end we will summarise the performance of each measure and offer some advice on when to use which method.
منابع مشابه
Detection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods
Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...
متن کاملDetection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods
Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...
متن کاملProposed new signal for real-time stress monitoring: Combination of physiological measures
Human stress is a physiological tension that appears when a person responds to mental, emotional, or physical chal-lenges. Detecting human stress and developing methods to manage it, has become an important issue nowadays. Au-tomatic stress detection through physiological signals may be a useful method for solving this problem. In most of the earlier studies, long-term time window was considere...
متن کاملبازشناسی خودکار حالت عاطفی مبتنی بر تغییرات فیزیولوژیک
Recently, automatic affective state recognition has been noteworthy for improving Human Computer Interaction (HCI), clinical researches and other various applications. Little attention has been paid so far to physiological signals for affective state recognition compared to audio-visual methods. Different affective states stimulate the Autonomic Nervous System (ANS) and lead to changes in physi...
متن کاملThe Relationship between Stock Market and Macroeconomic Variables: a Case Study for Iran
This paper examines the causal relationship between stock prices and macroeconomic aggregates in Iran, by applying the techniques of the long–run Granger non–causality test proposed by Toda and Yamamoto (1995). We test the causal relationships between the TEPIX Index and the three macroeconomic variables: money supply, value of trade balance, and industrial production using quarterly data for t...
متن کاملتوسعه سامانه مکاترونیکی بلادرنگ سنجش استرس، مبتنی بر سیگنالهای حیاتی
Stress has affected human’s lives in many areas, today. Stress can adversely affect human’s health to such a degree as to either cause death or indicate a major contributor to death. Therefore, in recent years, some researchers have focused to developing systems to detect stress and then presenting viable solutions to manage this issue. Generally, stress can be identified through three differe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological measurement
دوره 37 5 شماره
صفحات -
تاریخ انتشار 2016